Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34738489

RESUMO

it was to explore effect of isosorbide dinitrate combined with exercise training and rehabilitation on endothelial progenitor cells (EPCs) in coronary heart disease. EPCs were isolated and cultured from peripheral blood of coronary heart disease patients, and morphology and surface markers were detected. Then, 116 patients were rolled into treatment group (isosorbide dinitrate + exercise rehabilitation training) and control group (isosorbide dinitrate). Characteristics of EPCs cells after treatment were compared. The mononuclear cells were round and small in size and were not evenly distributed in the culture plate. EPCs cells grew as colonies after 8d-culture, and the surrounding cells grew outward in a germinating manner with colonies as the center, forming multiple cell populations. Positive rates of EPCs surface markers CD133, CD34, and vascular endothelial growth factor receptor (KDR) were 11.25±3.07%, 48.18±9.13%, and 76.36±8.27%, respectively. Proliferation activity of EPCs in the treatment group was dramatically higher versus controls at day three, five, and seven (P<0.05). Adhesion ability of EPCs in treatment group was dramatically higher than controls at day three, five, and seven (P<0.05). Migration ability of EPCs in treatment group was dramatically higher versus control group at day three, five, and seven (P<0.05). In short, isosorbide dinitrate plus exercise rehabilitation greatly enhanced the proliferation activity, adhesion ability, and migration ability of EPCs cells, which also played a beneficial role in the repair of endothelial injury, with notable effects.

2.
Sci Total Environ ; 707: 135976, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31865091

RESUMO

The development of cardiac patches by the combination of bioactive nano- and bio-materials with mesenchymal stem cells signifies an auspicious approach for the treatment of cardiac repair in myocardial infarction. In the present investigation, we study about the cardiac function of morphology improved gold nanoparticles combined with extracellular matrix/silk proteins for the cell proliferation and expansion of cardiomyocytes. The physico-chemical and morphological characteristics demonstrated that spherical and homogeneous Au particles are distributed on the matrix porous surface for providing favorable conductivity and biological influences in cardiac repair. The in vitro cell studies of prepared patches have established enhanced cell compatibility and retention of cardiomyocytes survival. The in vivo determinations imply that Au-ESF group decreases infarct size to 65% from 89% in control group. These developed cardiac patches can be highly suitable in the cardiac regeneration and offer new platform in cardiac tissue engineering.


Assuntos
Infarto do Miocárdio , Seda , Ouro , Humanos , Nanopartículas Metálicas , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...